Reconhecimento de face utilizando banco de imagens monocromáticas e coloridas através dos métodos da análise do componente principal (PCA) e da Rede Neural Artificial (RNA)

[Recognition to face using the monochromatic archive or the color archive by the methods of principal components analysis (PCA) and the Artificial Neural Network (ANN)]

Benedito Alencar de Arruda¹; Gilberto Arantes Carrijo²

¹Universidade Federal de Mato Grosso, Cuiabá/MT alencar@ufmt.br

²Universidade Federal de Uberlândia, Uberlândia/MG gilberto@ufu.br

Abstract. This research aims at implementing a system of face identification using the algorithm of Principal Components Analysis and the algorithm of the Artificial Neural Networks, comparing the performance between the two methods.

Keywords: face recognition; artificial neural network; principal component analysis.

Resumo. Este trabalho objetiva implementar um sistema de reconhecimento de face usando o algoritmo da Analise do Componente Principal (PCA) e o algoritmo da Rede Neural Artificial (RNA), comparando a performance entre os dois métodos na utilização de banco de imagens monocromáticas e coloridas

Palavras-chave: reconhecimento de face; rede neural artificial; análise do componente principal.

1. Introdução

O aumento vertiginoso do processo produtivo e de serviços com o respectivo aumento de pessoas envolvidas obriga as instituições e/ou empresas a darem atenção especial ao controle de pessoas que adentram em seus espaços. Com o controle feito por seres humanos tornando-se cada vez mais inviável, entra em cena a biometria que é usada para a identificação de pessoas através das características únicas de cada indivíduo, que neste trabalho foi pela a face.

2. Método da PCA [1]

2.1. Quanto ao Treinamento

Na fase de treinamento opera-se com arquivo composto de vetores de imagens de várias pessoas (arquivo-treino), aqui chamadas de classes, sendo que cada classe pode ter várias diferentes imagens ou poses.

2.2. Quanto ao Reconhecimento

Na fase de reconhecimento ou teste, a idéia é dar uma ou mais imagem de *j* pessoas para serem encontradas comparando suas características com aquelas do arquivo-treinamento.

2.3. Cálculo pela PCA

Supondo a experiência com um arquivo-treino composto por p imagens. Cada imagem , i=1,2...p convertido por concatenação em vetor pixel simples onde $k = M \times N$. Aplicando a PCA para o conjunto de imagem a de vetor linha sendo ser treinada obtém-se a matriz A que contém p linhas, sendo cada linha formada pelo vetor A dimensão de A é p x k. Seguindo, calcula-se a matriz através da covariância de A. Na sequência calculam-se os autovalores e seus autovetores da matriz . Obtém-se *k* autovalor e k autovetor, ou seja, para cada autovalor tem-se o autovetor correspondente com dimensão k. Depois se ordenam todos os autovetores com seus autovalores em ordem decrescente de autovalor. Os autovalores e autovetores além de ordenados devem estar também emparelhados de tal maneira que o i autovalor corresponde ao i autovetor. Selecionam-se os maiores d autovalores e autovetores emparelhados. Cria-se a matriz transformação S ao dispor em coluna os autovetores selecionados. O que se pretende é calcular os vetores características sendo com d < < k. Através da matriz S acha-se de . Este cálculo é feito pela equação:

(1)

Onde:

- matrizes transpostas de S
- matrizes transpostas de

Cada coluna de *S* é um autovetor de comprimento *k*. Esta matriz é de comprimento igual a M x N, ou seja, é a resolução da imagem de entrada. Assim pode-se converter cada autovetor em imagem revertendo a operação de concatenação. Estes autovetores imagens convertidos são chamados de autofaces desde que evidentemente sejam resultados de processamento de faces humanas.

Assim que se obter pode-se reconstruir a imagem da pessoa i. Ao usar todos os autovetores k em vez de d para formar S, a imagem reconstruída será . Entretanto neste caso pretende-se usar a resolução simplificada com d < < k. Quanto mais autovetores serem usados para na formação de S mais próximo da imagem original ficará a imagem reconstruída.

3. Método da RNA

3.1. Quanto ao Treinamento

A Rede Neural Artificial (RNA) é um processador inspirado na inteligência humana que adquire conhecimento através de experiências. Pela RNA o conhecimento é adquirido pelo processo de aprendizagem e forças de conexão entre neurônios, conhecidas como pesos sinápticos, que armazenam o conhecimento [2].

Na fase de treinamento possui dois passos distintos: um passo de propagação e outro passo de retro propagação para minimizar o erro entre a saída gerada pela rede e a saída desejada.

3.2. Quanto ao Reconhecimento

Na fase de reconhecimento ou teste, dá-se uma ou mais imagem de *j* pessoas, para serem encontradas comparando suas características com aquelas das imagens contidas no arquivo-treinamento que foi na fase inicial construído com vetores de todas as imagens (poses) de todas as classes.

3.3. Cálculo pela RNA

Pelo algoritmo da retro propagação é possível saber como ajustar os pesos sinápticos de modo a reduzir o valor da função custo [2]. Na propagação para frente, dado o sinal de entrada, calcula-se a saída da rede para a iteração n. A saída do neurônio j é dada pela equação apresentada a seguir:

Onde:

- campo local induzido (soma ponderada de todas as entradas sinápticas acrescida do bias) do neurônio *i* na iteração *n*, dado por:

Onde:

- *m* o número total de entradas da rede.
 - o peso sináptico que conecta o neurônio *i* ao neurônio j.
 - (n) o sinal de entrada do neurônio j ou, equivalentemente, o sinal de saída do neurônio i.

O sinal de saída é então comparado com a resposta desejada presente no conjunto de treinamento, de modo a se obter o sinal de erro para o j-ésimo neurônio de saída, de acordo com a equação abaixo:

$$(n)=$$
 $(n) (n)$

Revista Hispeci & Lema On Line — ano III – n.3 — nov. 2012 — ISSN 1980-2536 unifafibe.com.br/hispecielemaonline — Centro Universitário UNIFAFIBE — Bebedouro-SP

Onde:

- (n) resposta desejada na saída.
- (n) sinal na saída.

Na etapa de propagação para trás (retro propagação), o erro é propagado para trás em direção às entradas da RNA, atualizando os seus parâmetros livres de acordo com uma regra de correção do erro, de modo que a saída da rede aproxime-se da saída desejada. A forma como os parâmetros livres da rede são atualizados é dada pela *regra delta* [2].

$$\Delta = \eta . \quad (n) . \quad (n)$$

Onde:

n - índice da iteração.

 Δ - correção de peso aplicada na conexão entre o neurônio *i* e o neurônio j.

η - parâmetro taxa de aprendizagem.

- (n) gradiente local do neurônio j.
- (n) sinal de entrada do j-ésimo neurônio ou o sinal de saída do i-ésimo neurônio.

As equações utilizadas no cálculo do gradiente local podem ser encontradas com detalhes em Haykin [2]. Resumidamente tem-se: O gradiente local de um neurônio localizado na camada de saída é dado por:

$$(n) = (n)$$
. $($

O gradiente local de um neurônio localizado na camada intermediária j é dado por:

$$(n) = ()$$
.

Onde:

k - índice do(s) neurônio(s) à direita do neurônio j.

() - derivada da função de ativação.

A Função Tangente Hiperbólica, assume valores entre 1 e - 1, para a e b constantes [3][4] e é representada por:

$$\phi(v) = a \tanh(b \times v)$$

Onde:

a - parâmetro de inclinação da curva, limite superior.

b-parâmetro de inclinação da curva, limites inferior.

v - valor da ativação.

4. A Experiência do trabalho

Quanto ao hardware usou-se o notebook Dell, CPU com processador 1.40 .GHz, memória 504 MB; sistema operacional Microsoft Windows XP e linguagem de programa Matlab 7.0.1. Foram usados dois bancos de imagens. O arquivo Olivetti Research Laboratory da Universidade Britânica de Cambridge (ORL) [5] e o arquivo Face Recognition Data,

University of Essex, UK [6]. O primeiro contém fotos monocromáticas de 40 pessoas cada uma com 10 diferentes poses, num total de 400 fotos de dimensões 112 por 92 pixels no formato pgm. O segundo contém fotos coloridas de 20 pessoas cada uma com 20 poses diferentes, totalizando 400 fotos de dimensões 180 por 200 pixels no formato jpg. Em ambas as situações utilizaram-se um total de 400 imagens, sendo para a ORL 40 pessoas com 10 poses diferentes e para a UK 20 pessoas com 20 poses.

5. Comparação entre a experiência utilizando a PCA e a RNA

A tabela e as figuras estão no anexo. A experiência mostrou que o reconhecimento pela PCA é mais lento porém com maior taxa de acerto, já pela RNA o processamento é mais veloz no entanto a taxa de erro é um pouco maior.

Com relação ao arquivo monocromático a citada tabela apresenta os resultados comparando o de tempo de reconhecimento e a taxa de acerto entre a PCA e a RNA e a figura 1 mostra a curva de aprendizagem para a RNA.

Com relação ao arquivo de imagens coloridas a tabela do anexo apresenta os resultados comparando o de tempo de reconhecimento e a taxa de acerto entre a PCA e a RNA e a figura 2 mostra a curva de aprendizagem para a RNA.

6. Considerações Finais

Este trabalho mostrou uma das formas de se utilizar o método da PCA e da RNA. Basicamente tratou-se de reconhecer por dois métodos, uma dada imagem verificando se esta imagem estava contida em um arquivo dado. Neste caso trata-se dos arquivos de imagens de pessoas ORL preto e branco e o UK coloridas. O trabalho também mostrou que se pode facilmente incrementar os arquivos de dados e que embora havendo incremento de tempo de processamento, isto não torna inviável a sua aplicação, muito pelo contrário, se vislumbra um campo muito amplo para o exercício prático destes modelos. A ressalva a ser feita é com relação a PCA que aumenta muito o tempo de reconhecimento com o aumento do número de classes do arquivo. Portanto para o uso da PCA não se pode desejar respostas rápidas. Quanto a RNA, apesar de ligeira queda na taxa de acerto é um algoritmo muito rápido nas respostas. Assim, a cada um destes métodos pode-se ter um aplicação adequada às suas características. Tanto a PCA quanto a RNA são ferramentas robustas, compatível com o MATLAB, necessitando, para melhor uso, de uma configuração de hardware favorável quanto a memória e velocidade de processamento.

7. Referências

- [1] Kim, Kyungnam. Face Recognition using Principal Components Analysis.
- [2] Haykin, Simon. Redes Neurais Princípios e Prática, Bookman, 2001
- [3] LeCun, Y., 1993. Efficient Learning and second-order Methods, A Tutorial at NIPS 93, Denver.
- [4] LeCun, Y., 1989. "Generalization and network design strategies,

"Technical Report CRG-TR-89-4, Department of computer Science, University of Toronto, Canada.

- [5] Pagina eletrônica da Universidade Britânica de Cambridge. Disponível em julho de 2010.
- [6] Pagina eletrônica da Universidade de Essex, United Kingston. Disponível em 30 julho de 2010.

ANEXO

Tabela: Resultado do processamento para o arquivo monocromático e para o arquivo UK

Método	PCA		RNA	
Variáveis	* Arq ORL	**Arq UK	* Arq ORL	**Arq UK
Nº de imagem treino por	400	400	400	400
étodo				
Nº de imagem teste	120	60	120	60
Tempo de Reconhecimento	1 h e 54	3 h e 30	30 min.	23 seg
	min.	min		
Taxa de Acerto	100%	100%	95%	100%

^{*} arquivo monocromático

^{**} arquivo colorido

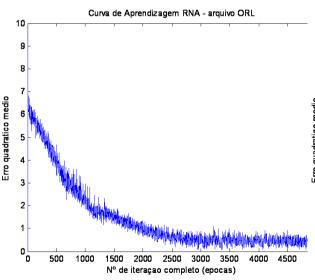


Figura 1- Curva de aprendizagem da RNA considerando o arquivo de imagens monocromáticas

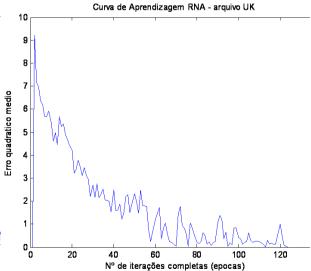


Figura 2- Curva de aprendizagem da RNA considerando o arquivo com imagens coloridas